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Preliminary Results : How does imbalance in cell type proportions affect integration performance and subsequent analysis?
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KNN Classification:

Integration Performance



F1 scores from KNN Classification 
indicate integration performance. 
The two sets of boxplots above are 
from repeated integration attempts 
of the 2-batch unbalanced PBMC 
dataset and the 4-batch unbalanced 
PBMC dataset. The fine-tuned 
models show poor performance, 
while the other models display 
similar performance. In the 2-batch 
PBMC datasets, all models perform 
worse for classifying natural killer 
cells, while in the 4-batch PBMC 
dataset, plasmacytoid dendritic cells 
also show low scores agnostic to the 
integration method.

Differential Expression Analysis: 
Variance of Gene Rankings 



It is important to understand whether 
imbalance in cell type proportions in 
integrated data sets affects biological 
signal in differential expression analysis. 
The top 10 marker genes for each cell 
type in the datasets being integrated 
were selected and the variance of those 
genes’ rankings were computed after 
integration. This heat map shows that 
when CD14 monocytes are 
downsampled or ablated, their ranking 
can significantly vary regardless of the 
integration method.

The goal of this project is to evaluate how novel single-cell foundation models perform compared to simpler models 
in handling imbalances in cell type proportions during data integration. Further, we examine the differences in 
biological signal that arise when imbalanced datasets are integrated using different tools.



To do so, we used the pipeline illustrated below. We employed perturbation experiments to study the impact of 
dataset imbalance and used inherently imbalanced datasets to study the potential differences in biological signal 
that arise from different integration methods. Foundation models were tested in both fine-tuned and zero-shot 
(non-fine-tuned) settings.

Visualizations of the output of data integration tools. The UMAPs in the top row are 
colored by original batch, and the second row are colored by pre-labeled cell types. 
Although the fine-tuned models do not show clustering by batch, the lack of 
clustering at all indicates it may be over-learning. The clear separation of the batch 
colors indicates weak batch correction.

UMAPs of the Embeddings Extracted Post Data Integration 

of Two Batches of PBMC Cells 

with Equal Numbers of Cells Per Cell Type
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 I mbalance in the number of cells per cell type in a sc-RNA-seq 
dataset DOES affect the performance of data integration across all 
methods.

Certain cell types affect integration performance, agnostic to 
integration method.

Challenges in benchmarking sc-RNA-seq foundation models 
include the fact that most are not designed to be fine-tuned for 
data integration, and they each have very different interfaces.

I ncorporate Transcriptformer into the pipeline.

Design a standard approach to testing fine-tuned performance of 
foundation models in regards to data integration.

Incorporate more complex datasets into the pipeline. (ex: 8 batch 
PDAC dataset)
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Unsupervised Clustering:

Changes in  Clustering When 
Proportions of Cell Types Shift



Unsupervised clustering is a 
common downstream task in 
scRNA-seq analysis. For most cell 
types, downsampling and ablation 
(in other words, an imbalance in cell 
type proportions) leads to varying 
results. This could potentially lead to 
varying biological interpretations of 
the data. 
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